
 

 

 

Project Number 683612 

 

D 3.1 Architecture design for the VIMpay API 
1.2 

06 October 2015 

Final 
 

Public distribution 

 

petaFuel 
 

Every effort has been made to ensure that all statements and information contained herein are accurate, 

however petaFuel accepts no liability for any error or omission in the same. 

© 2015 Copyright in this document remains vested in petaFuel GmbH 

Ref. Ares(2015)4120780 - 06/10/2015



                                                                               D 3.1 Architecture design for the VIMpay API 

2 1.2 6 Oktober 2015 
Public distribution 

Project Partner Contact Information 

petaFuel GmbH 
Ludwig Adam  
Muenchnerstrasse 4  
85354 Freising  
Germany  
Tel: +49 8161 40 60 202  
E-Mail: ludwig.adam@petafuel.de  

 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

3 1.2 6 Oktober 2015 
Public distribution 

Table of Content 

1 Introduction and scope of this deliverable ................................................................................................ 7 

1.1 pfREST- the open API provided for VIMpay ...................................................................................... 7 

1.2 Scope of this deliverable ................................................................................................................... 8 

2 Architecture design for VIMpay API .......................................................................................................... 9 

2.1 Overall design requirements ............................................................................................................. 9 

2.2 Environment ...................................................................................................................................... 9 

3 Structure & Implementation ................................................................................................................... 11 

3.1 Namespaces and resource adressing by URIs ................................................................................. 11 

3.2 Path parameters .............................................................................................................................. 11 

3.3 Implementation of an RESTful interface ......................................................................................... 12 

3.4 Documentation ................................................................................................................................ 13 

4 Security .................................................................................................................................................... 16 

4.1 Security in Infrastructure ................................................................................................................. 16 

4.2 Overall description of authentication and access processes .......................................................... 17 

4.3 Details in user authentication ......................................................................................................... 17 

4.4 Access control and access control requirements ............................................................................ 19 

4.5 Summary of the authentication and access control access concept .............................................. 20 

4.6 Message authentication .................................................................................................................. 20 

4.7 Central implementation .................................................................................................................. 20 

5 References ............................................................................................................................................... 22 

 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

4 1.2 6 Oktober 2015 
Public distribution 

Document Control 

Version Status Date 

1.0 First document and outline 25 August 2015 

1.1 Document for review 16 September 2015 

1.2 Final 06 October 2015 
 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

5 1.2 6 Oktober 2015 
Public distribution 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

6 1.2 6 Oktober 2015 
Public distribution 

Executive Summary 

This document constitutes deliverable D 3.1 Architecture design for the VIMpay API of Work Package 3 

(WP3) of the VIMpay project.  

The purpose of this deliverable is to describe the general (technical) architecture of the API that is used for 

the communication between the VIMpay app (and in a later stage third parties) and the petaFuel backend 

systems for VIMpay. It highlights several design decisions and details on implementation specifics. 

  

 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

7 1.2 6 Oktober 2015 
Public distribution 

1 Introduction and scope of this deliverable 

1.1 pfREST- the open API provided for VIMpay 

In the initial proposal for the VIMpay project and the subsequent Description of Action we have highlighted 

that the smartphone application will communicate with the petaFuel systems through a dedicated open 

interface (an API) as highlighted in the following figure: 

 

Figure 1 General VIMpay architecture as shown in DoA 

In further references, we will call this API layer pfREST (for petaFuel REST Interface). 

While petaFuel already employs several purpose-built internal or customer-facing interfaces connected to 

the processing infrastructure, it was decided that a new interface should be developed in scope of the 

project. 

The reason for this decision - apart from technical details - is that we strive to create an interface that 

directly implements the EU call for open interfaces to banking applications ( [1]):  It is the goal for the API 

work package to deliver a connection endpoint not only for the petaFuel-Internal management of VIMpay 

functionalities but also to open this interface to third parties that wish to connect to VIMpay (this will be so 

called VIMpay connected applications). Examples for such third parties are financial management 

applications that want to list transactions of a users' VIMpay card or merchants directly using the VIMpay 

payment options. 



                                                                               D 3.1 Architecture design for the VIMpay API 

8 1.2 6 Oktober 2015 
Public distribution 

Therefore, the API functionalities of VIMpay can be categorized into three different "usage layers" 

(formerly referenced to as namespaces): 

 The public layer for API calls that can be done from any person and client.  

These calls may not return sensitive information. 

 The private or authenticated layer for calls that are user-specific and done by an authenticated 

user 

 The third party layer for calls that are connected to a user but not done by the user herself but by a 

third-party 

 

1.2 Scope of this deliverable 

Within this deliverable the overall architecture for the pfREST API will be presented along with a description 

of fundamental implementations necessary to reflect this concept. 

In particular we will highlight the access concept and the security concept within pfREST along with some 

examples on the usage. 

 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

9 1.2 6 Oktober 2015 
Public distribution 

2 Architecture design for VIMpay API 

2.1 Overall design requirements 

While the functional requirements of the VIMpay API are defined by the requirements to the VIMpay and 

Processing Backend (i.e. the backend functions are provided through calls to pfREST), there are several 

design requirements that influence the architecture of pfREST: 

 

The implementation of the pfREST API follows these design requirements in the form of principles and 

design guidelines. 

 

2.2 Environment 

petaFuels processing platform and infrastructure is built as an Enterprise Java system.  

This means in general that programs are implemented in Java using Java EE 6 framework services and run in 

an Enterprise Java certified application server environment. 

Following that the VIMpay REST API is implemented in Java EE and the Java API for RESTful Web Services 

(JAX-RS, [2]) is used. 

The application runs inside a JBoss application server with Java EE support. 

The following figure shows the communication flow between the VIMpay application and the servers as it is 

implemented in the production environment: 

 



                                                                               D 3.1 Architecture design for the VIMpay API 

10 1.2 6 Oktober 2015 
Public distribution 

 

Figure 2 Communication flow for pfREST calls 

Currently the setup is as following: 

 The pfREST JAX-RS compliant application is deployed on two frontend JBoss Application servers 

which are clustered to provide failover mechanisms 

 The frontend servers / the API communicates with a backend in an internal network 

 Communication between the App and the API is done solely through encrypted HTTPS 

communication and tunneled through a packet filtering firewall and a dedicated Web Application 

Firewall (WAF) 

 

This setup provides a secure setup, both from data security as well as fault tolerance perspective. 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

11 1.2 6 Oktober 2015 
Public distribution 

3 Structure & Implementation 

3.1 Namespaces and resource addressing by URIs 

In a RESTful API method calls are done by accessing Uniform Resource Identifiers (URIs) via the HTTP 

protocol. 

While URIs are very similar to URLs of common webpages (and are represented by the same strings) they 

not necessarily point to webpages but rather to Internet resources, in this case API methods. 

Therefore, the API has a root URI, https://pfrest.petafuel.net and all methods / resources are addressed by 

URIs relative to this URI. 

There are no consistent specifications or best practices on how to structure the URI calls as it is dependent 

on the nature of the application but in general we are following the pattern that resources are first class 

entities and actions are relative to the resource. 

 

Please note: In the initial DoA we have defined the different access levels such as public, authenticated and 

third-party by different namespaces (e.g. https://pfrest.petafuel.net/public/user for public methods and 

https://pfrest.petafuel.net/private/user for private actions on user resource objects). 

This has been revised as our implementation of the security concept (see Auth Level discussion below) does 

not need the distinction in the namespace and it would break the initial resource-oriented design. 

Nevertheless we still make a logical distinction between these different access levels. 

3.2 Path parameters 

Underneath the root URL of the REST API it is only allowed to use resources like user or 

instantreplenishment. 

Each resource has its own namespace and provides specific functionality via additional paths. 

The additional path may consist of static or dynamic parts. Dynamic parts are used as parameters, so called 

path parameters. 

 

 

 

https://pfrest.petafuel.net/
https://pfrest.petafuel.net/public/user
https://pfrest.petafuel.net/public/user


                                                                               D 3.1 Architecture design for the VIMpay API 

12 1.2 6 Oktober 2015 
Public distribution 

3.3 Implementation of an RESTful interface 

The implementation of the interface is done using the JAX-RS framework ( [2]) . 

In particular we implement one Java class per Resource and implement the available methods as 

corresponding methods in that java class. 

3.3.1 Calls & Responses in line of the HTTP protocol 
While REST is no official standard per se there are de-facto standard conventions any RESTful interface 

should follow.  

In particular these are: 

 Communication is done using HTTP 

 Methods do matter: There are different meanings for different HTTP Methods when calling a 

resource. 

For example a PUT method on a resource should create a corresponding resource while a HTTP GET 

should retrieve a resource 

 Error messages and server feedback should follow the HTTP status codes 

These conventions are being followed in the pfREST architecture. 

With regards to the different method calls, pfREST uses the following conventions: 

 

Table 1 HTTP Methods supported by pfREST 

Please note that of the current state we have decided not to support PUT or DELETE method calls on 

resources. 

The reasoning behind that is following: 

 First of all, in historic context of standard web applications PUT and DELETE operations were only 

used for special applications such as WebDAV. 

Therefore, most web application firewalls block PUT and DELETE operations by default- we would 

need to define explicit exceptions for specific resources. 

 Second, looking at the architecture of VIMpay, resources are not directly created or deleted based 

on the method call to the API. In general, the creation or deletion is only triggered and the actual 

operation (such as creating a user) is done asynchronously for the user. 

For examples IDs - which are necessary for PUT requests- are controlled by our backend and not by 

the client calling the interface. Therefore we have decided to use POST and GET operations instead. 

  

Each method call produces different HTTP response codes based on the result of the call. 

While the standard HTTP 200/OK response code for successful execution is common for all resource calls, 

error codes are of course method specific. 

 

 



                                                                               D 3.1 Architecture design for the VIMpay API 

13 1.2 6 Oktober 2015 
Public distribution 

Currently in use are: 

 

Table 2 Current response codes of pfREST 

 

3.3.2 Standard response format 

 
pfREST supports different output formats in general but the standard format is JSON ( [3]) . 

3.4 Documentation 

We strongly believe that a good API must have an intuitive and good documentation- only then it can be 

used effectivly by other developers. With JavaDoc Java already supports a very good streamlined 

documentation mechanism that allows developers to directly annotate methods with documentation, 

which is then compiled into a comprehensive code documentation. Following that approach we have 

implemented the functionality that the documentation for a resource and its method call is directly 

available via REST calls: 

 Once a function is implemented each method parameter is annotated using the self-definied 

@DocParam Annotation (comparable to the @JavaDoc annotation) 

 A developer / user of the API may call any resource with the OPTIONS method call and retrieve the 

most current documentation for this method. 

 

 

 

 



                                                                               D 3.1 Architecture design for the VIMpay API 

14 1.2 6 Oktober 2015 
Public distribution 

Example: 

Documentation for user/login: 

 

Figure 3 Code snippet showing in line documentation 

When now calling a specific user resource method with OPTIONS the pfREST API returns the supported 

HTTP methods, e.g. POST or GET: 

 

 

Figure 4 OPTIONS call on pfREST 

When calling the user resource directly with OPTIONS the pfREST API returns a description for every 

method implemented in this resource. 



                                                                               D 3.1 Architecture design for the VIMpay API 

15 1.2 6 Oktober 2015 
Public distribution 

 

Figure 5 Documentation output returned by resource call 

 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

16 1.2 6 Oktober 2015 
Public distribution 

4 Security 

As with any VIMpay component, security is a first-level concern when designing and implementing the API. 

We make a distinction between infrastructure based security and application level security. While on the 

first we are mainly concerned with ensuring that the servers and communication is not compromised, for 

the latter we are concerned with data and user level security such as: 

 User authentication: Ensuring that users are properly authenticated 

 Data authenticity: Ensuring that data has not been manipulated 

 Access control: Ensuring, that requests can only be made for the right data (i.e. the users' own data 

and no foreign data) 

 

4.1 Security in Infrastructure 

In general the pfREST API is treated as any web application that is available in the production environment.  

Therefore, all the security requirements imposed by the high PCI-DSS and ISO 27001 standards ( [4]) also 

apply to the pfREST API. 

 Calls can only be made through https 

 The SSL configuration must follow the latest standards 

 All requests are filtered through a web application firewall 

 The infrastructure is pentested on a regular (quarterly basis) 

 

The following figure shows the current A-Level SSL configuration of the API endpoint. 

 

 

Figure 6 SSL configuration of pfREST endpoint 

 



                                                                               D 3.1 Architecture design for the VIMpay API 

17 1.2 6 Oktober 2015 
Public distribution 

4.2 Overall description of authentication and access processes 

When it comes to authentication and access control in the context of VIMpay following aspects have to be 

considered: 

 Based on the design requirements there is a distinction to be made between public, authenticated 
(private) and third party access 

 Multiple devices calling the API for the same user account shall be supported as required by the 
business requirements outlined in D 5.1 ( [5]) 

 Some method calls are specific to a given card / user account while other methods are more 
generic 

 A standard user should have access only to his data not the data of other users. Therefore calls to 
another users' resources must not be possible 

 Credentials for calling the API should be cache-able as required by the business requirements ( [5]) 

While there are standard mechanisms for authentication and access controls available (such as OAuth), 

they do not cater for the specifics of VIMpay. It has therefore been decided to introduce a proprietary 

security level to cater for all the needs of VIMpay. 

Our token-based-approach can be described in general as follows: 

 We defined an Auth Level which describe the level of security / privacy for each method call. 

Currently we have three Auth Levels 

o AuthLevel.Authorized corresponds to private access 

o AuthLevel.Authorized_HMAC  corresponds to private access and message authentication 

o AuthLevel.Unauthorized corresponds to public access. 

On method level it is defined and checked, which access level is required for executing the method. 

 While calls to AuthLevel.Public calls can be done by any user, Authenticated calls require an 

authentication of the calling user 

 An user authenticates himself by transmitting a previously acquired session-token for each call- this 

token is then checked prior to the execution of the method. 

 Linked to this session-token is a access control list that defines, which access the authenticated 

caller of the method has. 

In the following sections we detail the implementation of this concept. 

4.3 Details in user authentication 

4.3.1. Public and private namespace: Auth Level 
The authentication level of each method is defined by the developer by the @Auth annotation, which is 

then checked before the method call is executed. 



                                                                               D 3.1 Architecture design for the VIMpay API 

18 1.2 6 Oktober 2015 
Public distribution 

 

Figure 7 Example of the @Auth annotation 

Please note: as the authentication level is defined on a method level, a specific resource may contain both 

public and private methods of course. 

4.3.2 Authentication through Session Tokens: Concept & Login 
 

Whether a caller of an API method is allowed to call a method is determined by two aspects: First by the 

AuthLevel of the method in question and second by the fact if the caller is providing a valid session token 

along its request. 

A session token is basically a unique String that is transmitted by the REST client in form of a HTTP-header. 

It is centrally checked and can be acquired by: 

o Using a user specific login-call providing login data. (e.g. /user/login with email and password) 

This automatically generates a session token that is linked to the users' card account and allows for 

card specific access only 

o By a static entry generated by other management interfaces or manual entry. 

 

Although we call these tokens session-tokens they are not session-specific as in the common understanding 

of Session IDs in web applications. 

Tokens can and shall be re-used - they only expire after some time. Tokens can be stored locally on the 

device and used for further calls. 



                                                                               D 3.1 Architecture design for the VIMpay API 

19 1.2 6 Oktober 2015 
Public distribution 

 

 

4.4 Access control and access control requirements 

In the context of VIMpay most operations are performed on card accounts and / or user accounts. As the 

Prepaid Backend can also be used not only for the VIMpay product but for other PayCenter cards there is 

also a product descriptor necessary (although it will be "vimpay" for all calls related to VIMpay). 

So in general, for most method calls it must be known which card account and / or user account is 

affected. However, some functions (such as the registration) do not require the specification of card or user 

account. 

As we already have the authentication mechanism in place we have solved this problem in following way: 

o For each method call it is specified, if the user account and / or card account needs to be available. 

This is done by the so called AccessControlRequirements- Annotation: 

 

Figure 8 Example of the AuthControlRequirements-Annotation 

o We link to each token a access control list that lists the card IDs and user IDs (and product names) 

the caller with that token has access to. 

An user may have access to one specific card ID and user ID only or this access control list may list 

several card IDs or even a wildcard, enabling full access 

o Any method that defines an access control requirement needs that specific parameter to be 

uniquely defined. 

o In case of one specific card ID and user ID linked to the session token, this is already 

defined 



                                                                               D 3.1 Architecture design for the VIMpay API 

20 1.2 6 Oktober 2015 
Public distribution 

o However, if the access control lists several possible card IDs, the card ID must be specified 

as part of a dynamic parameter. 

 

4.5 Summary of the authentication and access control access concept 

To summarize these concepts the following table shows the different possible constellations for different 

calls: 

 

Table 3 Different configurations for SessionToken and AccessControlRequirements 

 

4.6 Message authentication (MAC) 

For certain cases we would like to make sure that the calls have not been done manually by the user and / 

or the data integrity of the parameters has not been compromised by an error. 

We have therefore introduced another authentication level that requires an HMAC to be submitted along 

with the call request. The HMAC is a SHA-256 hash of the message content using the session token as a key. 

The message / call is rejected if the Hash value does not correspond to the values / parameters submitted 

in the call. 

4.7 Central implementation 

 

 

 



                                                                               D 3.1 Architecture design for the VIMpay API 

21 1.2 6 Oktober 2015 
Public distribution 

 

 

Previously we have mentioned a central check for the authentication and access concept. This is done by a 

central filter component called SecurityRequestFilter which is called by default for every request made by 

the API. 

The checks done by this filter correspond to the checks for the different authentication and access concepts 

hightlighted above: 

o The Auth Level of the call is checked 

o If Authentication is required, the session token is checked for presence and validity 

o If HMAC is required, the HMAC is checked for presence and validity 

o The AccessControl assigned to the token is loaded 

o The AccessControlRequirements of the method are checked 

o Against uniqueness of provided card id and user id (see above) 

o Against validity of the provided cardid in the context of the access control list 

 

 

  



                                                                               D 3.1 Architecture design for the VIMpay API 

22 1.2 6 Oktober 2015 
Public distribution 

5 References 

 

[1]  European Central Bank, „Recommendations for "Payment Account Access" Services,“ European Central 

Bank, Brussels, 2013. 

[2]  O. inc., „JSR 311: JAX-RS: The JavaTM API for RESTful Web Services,“ 2009. [Online]. Available: 

https://jcp.org/en/jsr/detail?id=311. 

[3]  Crockford, „RFC 4627 JSON,“ 2009. [Online]. Available: https://tools.ietf.org/html/rfc4627. 

[4]  incits , INCITS/ISO/IEC 27001-2005.  

[5]  p. GmbH, „Business requirements for version 1 of the VIMpay app,“ 2015. 

 

 

 


